Cone-Wall Chamber Liner

Large Surface Area, Grazing Incidence Thermal, Sputtering, Sizing

19th HAPL Workshop (Madison, WI) Oct 22-23, 2008 T R Knowles, Y R Yamaki, G J Price, M H Douglas Energy Science Laboratories, Inc. (San Diego, CA)

Cone-Wall Chamber Liner

Smooth tungsten is known to damage quickly under helium implantation, severely limiting lifetime in HAPL chamber.

The engineered Cone-Wall is designed to *reduce the local flux and the depth of helium implantation*.

Sputter erosion is slow because sputtered ions redep onto neighboring cones

Flux, Fluence, and Range are Reduced

Thermal Overview

Steady-State

With a time averaged heat flux of 1 MW/m²

conducting through a 3-mm thick W Cone-Wall, the T drop is <10 K. The areal mass of such a Cone-Wall is the same as a 1-mm W smooth wall, (independent of aspect ratio).

Large cones (> 1 cm length) would result in correspondingly higher steady-state chamber temperature.

Pulsed

Radiant threats to the chamber wall generate T transients that can fatigue flat surfaces. A Cone-Wall with aspect ratio L/R= 10 experiences 10x lower flux.
Cone tips cannot be arbitrarily sharp however.
Thin tips <1 μm radius overheat during 0.2 μs pulse heating in RHEPP.

Scattering Overview

SRIM 2008.03 Modeling:		Vary Energy and Incidence Angle			
As energy decre	eases	Energy (keV):	<u>3450</u>	<u>700</u>	<u>30</u>
Sputtering	increases	Ion Angle (deg): 0			
Backscatter	increases decreases	Sputter Yield (atoms/ion):	0	0.0007	0.032
Range		Backscatter Fraction (ions/ion):	0.0010	0.0037	0.152
		Ion Average Depth (um):	5.03	1.0	0.0796
As angle increases (i.e.		Ion Angle (deg): 85			
more grazing)		Sputter Yield (atoms/ion):	0.029	0.165	0.708
Sputtering	increases	Backscatter Fraction (ions/ion):	0.2434	0.475	0.694
Backscatter	increases	Ion Average Depth (um):	0.6844	0.2667	0.0551
Range	decreases \checkmark	Ion Angle (deg): 89.5			
		Sputter Yield (atoms/ion):	0.316	0.482	0.489
		Backscatter Fraction (ions/ion):	0.732	0.786	0.829
		Ion Average Depth (um):	0.5637	0.2439	0.0548

SRIM Sputter & Backscatter

700-kV $^4\mathrm{He^+}@87\mathrm{deg}$ on W

Sputter yield Y= 0.208 appears Lambertian (isotropic)

Polar plot of local SPUTTER distribution

Backscatter B = 0.585 has a strong forward component ("reflecting" downward into cone-wall)

Polar plot of local BACKSCATTER distribution

Net Sputter + Redep (Preliminary)

Sputtered atoms are assumed to have a cosine (Lambertian) distribution and redep on neighboring cones.

- Backscatter ions are ignored in this calculation for simplicity (but are surely important to understand Cone-Wall evolution)
- Some ions sputter out of the local Cone-Wall, presumably cross the chamber, and reenter the Cone-Wall elsewhere. Such "backflow" into the chamber is much lower (>10x lower) than the backscatter from a smooth W wall.

Modeling performed by M.H. Douglas on ESLI W cone wall assuming local Lambertian yield distribution convoluted with a angle-dependent penetration probability.

This model ignores redep from chamber or from the flat base between (non-intersecting) cones.

Cone-Wall Sizing

Cone-Wall geometry is defined by Length L, aspect ratio L/R, and tip radius r Large L/R reduces local fluence, local T transient, and local implantation depth (range) by the factor R/L Large L increases mass and lifetime, but also increases average interior wall T Modest r ~ micron avoids excessive surface transient

Optimum geometry will need to balance the concerns

- 1. Thermal-mechanical stress life
- 2. He implantation life
- 3. Sputter life

Suitable geometry seems likely to be in the range: L ~ 1-3 mm; L/R ~ 3-30; r ~ 1-3 μ m

Conclusions

Cone-Wall offers

Enhanced area for reduced local flux, shallower implant, lower stress Reduced He implantation depth in the thermally active zone Reduced sputter backflow into chamber

Possibly slow(!) sputter erosion with redep between neighbors

Issue

SRIM predicts significant forward "backscatter" into cone wall. Does this enhance damage at the base or does it allow shallower implant depth as energy is dissipated through multiple grazing collisions?

RECOMMENDATIONS

- 1. Single needle characterization in Pulsed and SS modes
- 2. Needle cluster redep and backscatter (reflection) characterization
- 3. Modeling of He diffusion in shallow implant pulsed mode

W Needle Test Articles Prepared for SNL (T. Renk) and UWisc (S. Zenobia)

2008 HAPL (CTI PO#429698)

Needle Test Articles

Conical tip

Length	$3.25 \mathrm{~mm}$			
Tip diameter	1 um			
Full angle	0.1 rad			
Needle orientation ± 0.03 rad				
Graphite base				
Diameter	10 mm			
Height	9 mm			
Conical apert	ure $\sim 1.5 \text{ mm}, 45 \text{ deg}$			
Hole diameter	r 0.27 mm			
Hold length	9 mm (clearance)			
W Needle (kinked f	for friction fit)			
Purity	99.9% W			
Length	19 mm			
Diameter	$0.25 \mathrm{~mm}$			

W Needle Surface

Heat-treated W wire Ground surface Grain structure revealed by etching

Materials and Processing

